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Abstract. In this article we study the dependence degree of the traded volume of the Dow Jones 30 con-
stituent equities by using a nonextensive generalised form of the Kullback-Leibler information measure.
Our results show a slow decay of the dependence degree as a function of the lag. This feature is compatible
with the existence of non-linearities in this type time series. In addition, we introduce a dynamical mecha-
nism whose associated stationary probability density function (PDF) presents a good agreement with the
empirical results.

PACS. 05.45.Tp Time series analysis – 89.65.Gh Economics; econophysics, financial markets, business
and management – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

The study of complexity, in particular within financial sys-
tems, has become one of the main focus of interest in sta-
tistical physics [1]. In fact, several statistical properties
verified in financial observables, e.g., relative price changes
(the return) and returns standard deviation (the volatil-
ity), have enabled the establishment of new models which
characterise systems ever better [2]. Along with the previ-
ous two quantities, another key observable is the number
of stocks of a certain company traded in a given period
of time, the traded volume, v. In this article we analyse
the dependence degree of 1-minute traded volume time
series, V (t), of the constituents of the Dow Jones Indus-
trial Average index (DJ30), between the 1st of July 2004
and the 31st of December 2004. We also introduce a dy-
namical mechanism that provides the same stationary
PDF [3–5]. In order to avoid spurious features, we have
removed intra-day pattern of the original time series and
normalised each element of the series by its mean value
defining the normalised traded volume, v (t) = V ′(t)

〈V ′(t)〉,

where V ′ (t) = V (t)
Ξ(t′) , Ξ (t′) =

∑N
i=1 V (t′i)

N and 〈. . .〉 is de-
fined as the average over time (t′ represents the intra-day
time and i the day).

2 Dependence degree

Discrimination between two hypothesis, consistent testing,
is ubiquitous in science. Examples are the stationary/non-
stationary character of time series or the dependence
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degree between its elements. Concerning the latter, the
most widely applied measure of “dependence” between
variables is the correlation function mathematically de-
fined as,

C [v (t) , v (t + τ)] =
〈v (t) v (t + τ)〉 − 〈v (t)〉2

〈
v (t)2

〉
− 〈v (t)〉2

.

Since the correlation function is basically a normalised
covariance (or the second cumulant of the stochastic pro-
cess), it will only be a suitable statistical procedure for
linear correlations or correlations that can be written in a
linear way. In other words, the correlation function is not
able to determine conveniently non-linearities in a given
group of data. Aiming to consistently test the dependence
or independence of stochastic variables it was recently de-
fined a dependence measure that has been able to evaluate
non-linearities, for instance, in daily return time series [6]
and GARCH processes [7] for which the correlation func-
tion gives zero value.

So, let us start by defining our dependence mea-
sure as the non-extensive generalised mutual information
measure,

Iq′ = −
∫

p (y) lnq′
p′ (y)
p (y)

dy

where lnq′ (y) = yq′−1−1
q′−1 (lnq′ (y) = ln1 (y)), which

emerged within the non-extensive formalism based on
Tsallis entropy [8]. For q′ = 1, it is equivalent to the
Kullback-Leibler information gain [9,10].

Let us now assume that y is a two-dimensional ran-
dom variable y = (x, z). We can quantify the degree of
dependence between x and z by computing Iq′ for p (x, z)
and p′ (x, z) = p1 (x) p2 (z), where p...(. . .) represents the
marginal probability. For this case, Iq′ presents both a
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Fig. 1. Left: normalised generalised Kullback-Leibler measure, Rq′ , vs. entropic index, q′, for the International Business Machines
(IBM). The inset shows, as mere illustration, the derivative of R in respect to q′ for τ = 1. The maximum corresponds to
qop = 1.58. Right: the symbols represent the dependence degree, qop, vs. τ (in minutes) averaged over the 30 time series. The
line represents a fitting logarithmic function (qop = 1.59 + 0.11 log(τ )) (the correlation coefficient is 0.9944) pointing up the
slow increase of qop.

lower bound and an upper bound. The former, IMIN
q′ = 0,

corresponds to total independence between x and z, i.e.
p (x, z) = p′ (x, z). The latter, IMAX

q′ , represents a one-to-
one dependence between variables and is given by,

IMAX
q′ = −

∫ ∫

p (x, z) [lnq′ p1 (x)

+ (1 − q) lnq′ p1 (x) lnq′ p2 (z)] dx dz.

From these two extreme values, it is then possible to define
a normalised measure,

Rq′ =
Iq′

IMAX
q′

∈ [0, 1] ,

which has an optimal index, qop (where the prime was
suppressed for clarity).

This index is optimal in the sense that the gradient
of the measure R is most sensitive and hence most capa-
ble of determine variations in the dependence among the
variables. Moreover, it is optimal because its two extreme
values are associated to full dependence and full indepen-
dence between x and z. Analytically, it is determined by
the inflection point of Rq′ vs. q′ curves. For one-to-one
dependence we have qop = 0, and qop = ∞ for total inde-
pendence (see Ref. [9] for a detailed discussion).

We have computed Rq′ for all time series with x =
v(t), z = v(t + τ), where τ represents the lag. A typical
example is presented in Figure 1 (left panel). Analysing
the behaviour of qop as a function of τ , we have observed a
slow increase of qop, i.e., a slow decrease in the dependence
degree between variables as it is visible in Figure 1 (right
panel). Our result reveals the existence of significant non-
linear dependences which seem to be present even for large
times. In Figure 2 it is possible to see that the correlation
value between τ = 1 and τ = 1000 diminishes around 80%
while the qop value between τ = 1024 and τ = 1 only
reduces in 20% (approximately), i.e., a decrease in the
dependence degree in the same amount.

Fig. 2. Symbols represent the average correlation function for
the 30 time series analysed and the line represents a double ex-
ponential fit with characteristic times of γ−1 = 13 and T = 332
yielding a ratio about 25 between the two time scales equa-
tion (5) (R2 = 0.991 and χ2 = 9× 10−6 and time in minutes).

3 A possible dynamical model for traded
volumes

The non-linear character of a time series manifests on
the exhibition of (asymptotic) power-law behaviour of the
stochastic variable (stationary) PDF. This power-law-like
behaviour of the PDF was also verified for traded volume
time series [3,4]. In order to describe a possible dynami-
cal mechanism for this observable, let us suppose that the
traded volume of an equity is described by the following
stochastic differential equation,

dv = −γ
(
v − ω

α

)
dt +

√

2
γ

α
v dWt, (1)

where Wt is a regular Wiener process following a nor-
mal distribution and v ≥ 0. The right-hand side of equa-
tion (1) may be interpreted as follows: the deterministic
term represents a natural mechanism of the system which
aims to keep the traded volume at some “normal” value,
ω/α with a relaxation time of order of γ−1. The stochas-
tic term mimics the microscopic effects on the evolution
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of v, just like a multiplicative noise used to replicate inter-
mittent processes. This dynamics and the corresponding
Fokker-Planck equation [11] leads to an inverted Gamma
stationary distribution,

f (v) =
1

ω Γ [α + 1]

( v

ω

)−α−2

exp
[
− ω

v

]
. (2)

Consider now, in the same lines of Beck and Cohen super-
statistics [16], that instead of constant, ω is a time depen-
dent quantity which evolves on a time scale T larger than
the time scale γ−1 required by equation (1) to reach sta-
tionarity. This time dependence is, in the present model,
associated to changes in the volume of activity (number
of traders that performed transactions) [5]. Furthermore,
if we assume that ω follows a Gamma PDF,

P (ω) =
1

λΓ [δ]

(ω

λ

)δ−1

exp
[
−ω

λ

]
, (3)

the long-term distribution of v will be given by p (v) =∫
f (v) P (ω) dω which yields,

p (v) =
1
Z

(v

θ

)−α−2

expq

[

−θ

v

]

(4)

where λ = θ (q − 1), δ = 1
q−1 − α − 1 and expq [x] ≡

[1 + (1 − q) x]1/(1−q) is the q-exponential function, the in-
verse function of lnq (y) (exp1 [x] = ex) [8], Z being the
normalisation constant.

This approach is probabilistically equivalent to the
one in [5,12], but it is more realistic concerning the de-
pendence on v of the Kramers-Moyal moments. In other
words, this model is, in principle, a better dynamical ap-
proach. In regard of the measured values of q, θ, α in
Table 1, we verify that they are enclosed within a small
interval in the q values, 1.19±0.02 (close to 6

5 ) and presents
wider intervals for the other parameters, α = 2.63 ± 0.48
and θ = 8.31±1.86. In Figure 3 we present the best (Pfizer,
PFE) and the worst (Du Pont, DD) fits.

With the α, θ and q fitting values in Table 1 we have
generated a set of time series aiming to test the validity
of our approach. For the evaluation of the time scales γ−1

and T , we have considered the simplest approach, i.e., the
ratio between the two time scales which describe the CF
for traded volume. See equity values of γ T in Table 1. As
can be seen from Figure 2, there is a fast decay of the CF,
related to local equilibrium, and then a much slower decay
for larger times that are due to a slow decay of correlations
in ω, i.e.,

C [v (t) , v (t + τ)] = C1 e−γ τ + C2 e− τ/T . (5)

This slow decay is consistent with a slow dynamics of ω,
necessary condition for the appliance of a superstatisti-
cal model. In our numerical calculations we have defined
time in γ−1 units and so γ−1 = 1. The ω values used
to mimic the time series were obtained from stationary
Feller processes [13] with a Ti relaxation for each i equity
(see specific values of γ T in Tab. 1). Looking to Figure 3
we have observed that our dynamical propose, using this
simple approach, is able to provide good probabilistic de-
scription of the data.

Table 1. Obtained values from: PDF fitting (q, θ and α) and
from correlation analysis (γ T ). The first column presents the
companies codes at both NYSE and NASDAQ.

q θ α T γ

AA 1.19 8.81 2.67 29

AIG 1.22 4.32 1.84 34

AXP 1.21 6.51 2.06 26

BA 1.18 10.67 2.95 24

C 1.15 9.20 3.18 25

CAT 1.20 7.49 2.32 13

DD 1.20 7.33 2.26 53

DIS 1.21 7.29 2.19 20

GE 1.17 8.31 2.75 33

GM 1.21 8.14 2.46 29

HD 1.17 8.76 2.84 27

HON 1.19 9.06 2.67 70

HPQ 1.19 8.55 2.64 28

IBM 1.14 12.36 3.70 41

INTC 1.20 4.22 1.70 25

JNJ 1.17 8.55 2.91 11

JPM 1.17 9.14 2.92 22

KO 1.19 7.88 2.61 26

MCD 1.21 7.48 2.30 30

MMM 1.19 7.14 2.33 23

MO 1.18 7.73 2.66 12

MRK 1.25 1.24 0.61 21

MSFT 1.22 4.57 1.62 23

PFE 1.18 6.31 2.44 33

PG 1.16 8.94 2.99 23

SBC 1.19 8.62 2.57 25

UTX 1.14 18.47 4.71 32

VZ 1.17 8.83 2.84 34

WMT 1.16 10.24 3.23 30

XOM 1.15 11.45 3.50 31

4 Final remarks

In this article we have analysed some statistical properties
of the traded volume equities that constitute the DJ30 in-
dex, namely the dependence degree between time series
elements and stationary PDF. For the dependence degree
we have used a non-extensive generalised Kullback-Leibler
information measure. With this procedure we have stud-
ied the dependence between variables which decreases on
a logarithmic way with the lag. We have also verified that
this decrease of the dependence is much slower than the
one observed in the correlation function. This fact indi-
cates that non-linearities are present in traded volume dy-
namics and that they may be important factors in other
statistical features such as multi-fractality [14]. Analysing
the stationary distribution we have verified that it fits
well for a q-generalised inverted Gamma distribution pre-
senting a q value around 6

5 for all series. In addition, we
developed a dynamical mechanism which has as station-
ary PDF the q-generalised inverted Gamma distribution.
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Fig. 3. Left: (upper panel) excerpt from the analysed Pfizer time series; (lower panel) excerpt from the time series generated
to mimic Pfizer using the values presented in Table 1. (t in minutes) Right: symbols represent the empirical PDF for Pfizer
(shifted by a factor of 10) and Du Pont normalised traded volume time series, which correspond to the best (R2 = 0.9953 and
χ2 = 0.0002) and worst (R2 = 0.9763 and χ2 = 0.001) fits, respectively. The lines correspond to simulation using the values
presented in Table 1.

Further developments of these model may be achieved
using perturbative calculus for a more accurate determi-
nation of γ [15] and determination of the ratio between
the scale of local relaxation and the mean traded volume
update [17].
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